Reverse Genetics Approaches for the Development of Influenza Vaccines
نویسندگان
چکیده
Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.
منابع مشابه
Influenza vaccines Richard
1. Abstract 2. Introduction 2.1. Mechanisms of influenza virus evolution 2.2. Resurgence of influenza vaccinology 3. Current influenza vaccines 3.1. Inactivated vaccines 3.2. Live attenuated vaccines 3.3. Limitations of current influenza vaccine strategies 4. Reverse genetics 4.1. Creation of high-growth reassortant vaccine strains 4.2. Other uses of reverse genetics in influenza vaccines 4.3. ...
متن کاملRecombinant Influenza Vaccines
This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines...
متن کاملReference viruses for seasonal and pandemic influenza vaccine preparation
The production of seasonal and pandemic influenza vaccines depends on the timely availability of suitable reference viruses.Seasonal vaccines are traditionally produced from high-growth reassortant viruses, which have been derived empirically using well-established techniques. However, it is not possible to use such approaches in deriving vaccine reference viruses from highly pathogenic H5N1 vi...
متن کاملConfronting Potential Influenza A (H5N1) Pandemic with Better Vaccines
Influenza A (H5N1) viruses are strong candidates for causing the next influenza pandemic if they acquire the ability for efficient human-to-human transmission. A major public health goal is to make efficacious vaccines against these viruses by using novel approaches, including cell-culture system, reverse genetics, and adjuvant development. Important consideration for the strategy includes prep...
متن کاملDesigning of A Multi-epitope Recombinant Protein, Consisting of Several Conserved Epitopes from Hemagglutinin Protein of the H1N1 and H5N1 Strains of Influenza Virus by Immunoinformatics Approaches
Introduction: According to marked advances in bioinformatics studies, development of influenza vaccines has been greatly modified in many studies. In this study, we have designed a multi-epitope recombinant protein, consisting of several conserved epitopes from Hemagglutinin protein of the H1N1 and H5N1 strains of Influenza virus by immunoinformatics approaches. Materials and Methods: The regis...
متن کامل